Siegel modular forms of degree two
نویسندگان
چکیده
منابع مشابه
On the graded ring of Siegel modular forms of degree
The aim of this paper is to give the dimension of the space of Siegel modular forms M k (Γ(3)) of degree 2, level 3 and weight k for each k. Our main result is Theorem dim M k (Γ(3)) = 1 2 (6k 3 − 27k 2 + 79k − 78) k ≥ 4. In other words we have the generating function : ∞ k=0 dim M k (Γ(3))t k = 1 + t + t 2 + 6t 3 + 6t 4 + t 5 + t 6 + t 7 (1 − t) 4. About the space of cusp forms, the dimension ...
متن کاملSiegel Modular Forms
These are the lecture notes of the lectures on Siegel modular forms at the Nordfjordeid Summer School on Modular Forms and their Applications. We give a survey of Siegel modular forms and explain the joint work with Carel Faber on vector-valued Siegel modular forms of genus 2 and present evidence for a conjecture of Harder on congruences between Siegel modular forms of genus 1 and 2.
متن کاملSiegel modular forms and Hecke operators in degree 2
In our earlier paper [7], we presented an algorithm for computing explicitly the coset representatives and the action of the Hecke operators on Siegel modular forms for arbitrary degree. The action was expressed in terms of the effect on the lattice-Fourier coefficients of the form (see the introduction for a definition of this term). This expression involved combinatorial terms that count loca...
متن کاملA Note on Eigenvalues of Hecke Operators on Siegel Modular Forms of Degree Two
Let F be a cuspidal Hecke eigenform of even weight k on Sp4(Z) with associated eigenvalues Xm (m e N). Under the assumption that its first Fourier-Jacobi coefficient does not vanish it is proved that the abscissa of convergence of the Dirichlet series J2m>¡ \*-m\m~S *s 'ess tnan or eQual to k ■ Introduction Let F be a cuspidal Hecke eigenform of weight k € 2N on Sp4(Z) with associated eigenvalu...
متن کاملNumerical computation of a certain Dirichlet series attached to Siegel modular forms of degree two
The Rankin convolution type Dirichlet series DF,G(s) of Siegel modular forms F and G of degree two, which was introduced by Kohnen and the second author, is computed numerically for various F and G. In particular, we prove that the series DF,G(s), which shares the same functional equation and analytic behavior with the spinor L-functions of eigenforms of the same weight are not linear combinati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1982
ISSN: 0386-2194
DOI: 10.3792/pjaa.58.369